MONOMERE UND DIMERE IMIDOYL-ISOTHIOCYANATE

J.Goerdeler und D.Weber

Organisch-Chemisches Institut der Universität Bonn

(Received 17 February 1964)

Imidoylchloride lassen sich mit Alkalirhodanid in Aceton oder Acetonitril bei Temperaturen zwischen 0-50° quantitativ zu Imidoyl-isothiocyanaten umsetzen¹:

Der Senföl-Charakter der Verbindungen wird durch das IR-Spektrum (starke Bande bei 2000-2100/cm, mit Schulter zum langwelligen Bereich) sowie glatte Reaktion mit Aminen bewiesen.

Tabelle 1 Monomere Imidoyl-isothiocyanate (I)

R	R'	Charakteristik	Fp
C ₆ H ₅	CH ₃	als Piperidin- derivat isoliert	
C ₆ H ₅	C ₆ H ₅	schwach gelbe Nadeln	31 ⁰
C ₆ H ₅	p-CH ₃ O-C ₆ H ₄	als Piperidin-derivat isoliert	
C ₆ H ₅	p-C1-C ₆ H	gelbe Spiesse	90°
C ₆ H ₅	$p-NO_2-C_6H_4$	hellgelbe Plättchen	123°
p-CH ₃ O-C ₆ H ₄	C ₆ H ₅	gelbe Balken	92°
p-NO ₂ -C ₆ H ₄	C ₆ H ₅	gelbe Nadeln	138°

Manche der Verbindungen verändern sich spontan bereits bei der Isolierung, andere erst beim Erhitzen; Rotfärbung und Verschwinden der Senföl-Bande begleiten den Vorgang. Es handelt sich um eine Dimerisierung gemäss folgendem Schema:

$$2 \overline{\underline{I}} \longrightarrow R \stackrel{S}{\longrightarrow} R \stackrel{NR'}{\longrightarrow} S \qquad \overline{\underline{I}}$$

Sie geschieht umso schneller, je polarer das Lösungsmittel ist, und je mehr der N-Substituent (R') Elektronendonator-Eigenschaften hat. Natürlich können die Dimeren, die in Ausbeuten von 40-80 % entstehen, auch ohne Zwischenisolierung der Monomeren gewonnen werden.

Tabelle 2	Dimere Im	idoyl-isothiocyana	te (II)
R	R*	Charakteristik	Zersetzungspunkt (Kofler-Bank)
C ₆ H ₅	CH,	rote Nadeln	ca. 224°
C ₆ H ₅	C ₆ H ₅	rote Stäbchen	ca. 236°
C ₆ H ₅	p-CH ₃ O-C ₆ H ₄	rote Stäbchen	ca. 242 ⁰
C ₆ H ₅	p-C1-C ₆ H ₄	rote Nadeln	ca. 250°
C ₆ H ₅	$p-NO_2-C_6H_4$	orangerote Nadeln	ca. 202 ⁰
р-СН ₅ О-С ₆ Н ₄	C ₆ H ₅	dunkelrote Stäbe	ca. 224 ⁰
$p-NO_2-C_6H_4$	C ₆ H ₅	rote Stäbchen	ca. 218°

Für die angegebene Struktur II sprechen insbesondere die beiden folgenden Umsetzungen:

$$C_{e}H_{s} = C_{e}H_{s}$$

$$C_{e}H_{s} = C_{$$

R	R'	Charakteristik	Fp
C ₆ H ₅	H	gelbe Nadeln	222°
C ₆ H ₅	Cl	zitronengelbe Nadeln	238 ⁰
р-СН ₃ О-С ₆ Н ₄	H	gelbe Nadeln	226°

Die Verbindung III, R=C $_6$ H $_5$, R'=H wurde unabhängig aus dem bekannten 2 2-Phenyl-4-chinazolinon mittels P $_4$ S1 $_0$ hergestellt.

LITERATUR

- Vergleiche Vortragsreferat J.Goerdeler, <u>Angew.Chemie</u>
 75, 941 (1963)
- ² B.Pawlewski, <u>Ber.Dtsch.Chem.Ges.</u> <u>36</u>, 2384 (1903)